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Outline ) i

* Peridynamics background
* Cyclic bond strain
* Fatigue model
* Nucleation phase
 Growth phase

* Heterogeneity




Purpose of peridynamics* ) .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Peridynamics basics: )
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.

e The material within a distance 0 of x is called the “family” of x, Hy.

@ B
0 = horizo

Hy = family of x

General references

SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Peridynamic nonlocality: )
Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation




Potential energy minimization yields the =
peridynamic equilibrium equation

Laboratories

e Potential energy:
B

where W s the strain energy density, y Is the deformation map, b Is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:

/ f(q,x) dV,+b(x) =0

x

for all x. f is the pairwise bond force density.




Material model determines bond forces

h
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Bond forces depend on the deformation of the families of both x and q, together with

the material models at these points.

Deformation y (-, t)

Undeformed families

Deformed families and bond forces

In state notation: f(q.x) = T[x](q — x) — T[q]{x — q)

"

~.

From mat model at x

From mat model at q
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The nature of internal forces

Standard theory Peridynamics
Stress tensor field Bond forces between neighboring points
(assumes continuity of forces) (allowing discontinuity)

®q
f(q,x)
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Force state maps bonds
onto bond forces

Stress tensor maps surface
normal vectors onto
surface forces

pit(x,t) =V-o(x,t)+ b(x,t) pii(x, t) = j f(q,x)dVy + b(x,t)
Hy

Differentiation of surface forces

Summation over bond forces




Peridynamic vs. local equations ) .

* The structures of the theories are similar, but peridynamics uses nonlocal operators.

Relation Peridynamic theory Standard theory
Kinematics Y{q-x) = y(a) - y(x) F(x) = X (x
X

Linear momentum | ;5 (x) — / (t(q, X) — t(x,q)) dVy+b(x) | PY(X)=V-0o(x)+b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T = i(X) o=o(F)
Angular momentum / Y(q—x) x T(q —x) dVy = 0 o— o’
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—i—r t=ag-F+q+r

T(€) Y (&) dVe

N :L |




EMU numerical method

e Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = /Hf(q, x, 1) dVy + b(x,1)

l

pyy =) f(xp,%;, 1) AVj + b}
keH

e Looks a lot like MD.
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Discretized model in the
reference configuration




Bond based material models ) e,

* If each bond response is independent of the others, the resulting material model is
called bond-based.
* The material model is then simply a graph of bond force density vs. bond strain.
 Damage can be modeled through bond breakage.
* Bond response is calibrated to:
e Bulk elastic properties.
e Critical energy release rate.

Bond force densityA Bond
breakage

~
7

Bond strain




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

Bond force density 1
Bond breakage

n

Bond stra'in

Critical bond strain damage model
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Autonomous crack growth ) 5.

cececceccecceccceccecscssssseses — Brokenbond
ceceecceccecccccsabeceeceaaess — Crackpath
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e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.



Critical bond strain:

h

Relation to critical energy release rate

If the work required to break the bond & is wq(&), then the energy
release rate is found by summing this work per unit crack area (J.

G:/Od/mwo(s)dvgds

Foster):

Ry

Crack\v %

/¢

£

7z

Wo

N

v S

Can then get the critical strain for bond breakage s* in terms of G.

7

Bond strain

Could also use the peridynamic J-integral as a bond breakage criterion.

Sandia
National
Laboratories




Constant bond failure strain reproduces ()
the Griffith crack growth criterion

>~
i

Total work — total strain energy

Slope =0.013
Ry From bond
= properties, energy
€ | release rate _ — >
<1  should be Crack tip position

|

» This confirms that the energy consumed per unit crack growth area equals the expected
value from bond breakage properties.




Treating discontinuities on an equal basis @)
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allows some subtleties in fracture to appear

Peeling and tearing of an adhesive
membrane

Wavy crack path in a sheet
(VIDEO)

Complex crack paths in reinforced
concrete

16



Cyclic strain in a bond h

e For a given bond &, the bond elongation is the change in bond length:
e=[Y(&)| - & =y(x+E&) —y(x)|

e The bond strain is the change in length over initial length:

€

S

e Let s and s be the two extremes under cyclic loading of &.

e The cyclic bond strain is defined by

/ X+ &

e=|sT —s|
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Structure of a crack tip field

o Let ecore(0) be the largest cyclic strain in any bond.

e Can show by a dimensional argument 3 £.5re such that

AK
EV$

)

Ecore (5) — Ecore

where AK = cyclic stress intensity factor and £ = modulus.

LEFM: 1/+/Z

PD:§ = &,

PD:§ = 6,

PD: 6 = &,
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e Strain
score(61)
Core bond

/ score(62)

Crack T T ©
\ T T * ? ? score(d3)

[{eeé

| 4

/ / Crack tip

Broken bonds

Position z
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Remaining life of a bond

e Each bond in the body has a remaining life A\(IN) where NN is the cycle
number.

e [he remaining life is monotonically decreasing over time.

A0)=1, A<O0.

e [he bond fails at the first cycle N when

A(N) < 0.

A A

Bond failure
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Fatigue model

e [he fatigue model specifies how the remaining life of each bond depends

on the loading.
dA

Fa

where A and m are constants and ¢ is the cyclic bond strain.

N) = —Ac™

e The constants are calibrated separately for phases | and Il (nucleation and
growth).




Phase | calibration from S-NV data

e Run many cyclic loading tests at different values of £ (constant for each
test).

e For each test, compute when damage starts:

)\ 1
“Z(N) = —Ae™ — N =
(&) 3

e Compare this to data on an e-N plot, fit A and m.

loge

log N

Experimental data
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Fatigue nucleation in aluminum alloy ([
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2 Peridynamic,
E_ "o with fatigue limit ]
< *Saf |
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& 10 /v :
Peridynamic,
no fatigue limit
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Load cycle

e Model with a fatigue limit:

d\
AN

(N) = —A(max(O, € — EDC))m

Test data: T. Zhao and Y. Jiang. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30 (2008)834-849.



Growth: Bonds interact with the strain @)

field ne

Loading cycle N
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ar an approaching crack

Bond remaining life A(N)

Growth rate da

— I Bond & ahead of crack tip

Bond ¢ interacts with crack tip
‘ Bond ¢ about to break

T Broken bond &




Relate crack growth to remaining life @)=

e Evolution of remaining life:

) &
d\ dX dN
A(0) — A(0) = — dz = —————dz.
(9) = A(0) OdzZ/OdezZ
e Recall .
— = —Ae™.
AN -
e Denote by da/dN the crack growth rate.

A é
1 —0= m (%) d
da/dN/U e(z) d2

Cyclic strain ahead of a crack:

) = et () = 254 (2).

e [hus, for some c,

da
Y CAAK™
AN~ ©




Phase Il calibration from Paris Law data ()&

e Now have

da m
ﬁ = CAAK

where ¢ and m are as yet unknown.

e Assume the Paris Law holds:

da B M
pa CAK

where C and M are constants that can be found from test data.

e Conclude
m = M.

e Need to do one computational simulation with an assumed value C =1
to evaluate A.




Summary so far h) i,

e Each bond has a remaining life A(N):

dA

A(0)=1 —
o=1 =

(N) = —Ae™, A < 0 means failure.

e In Phase |, use A and m from S-NN data.

e In Phase |l, use a different calibration from Paris law data.




Time mapping permits very large NV ) i,

e We can avoid modeling each cycle explicitly.

e Define the loading ratio by
R=— — e=|st—s7|=|(1-R)sT|
e Maptto NN:
N = et/’?‘
where 7 is a constant chosen according to convenience.

e Fatigue model in terms of ¢ instead of IV:

N A d\  d\dN —|1—R|AN

— |S+|m.

dt ~ dN dt T
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Fatigue crack growth in aluminum

Crack length Paris law plot
45 T T T T T T T T T "5.4 T T T T T T R T T
Il
J -5.86 g ‘ .
Experiment —/
-5.8 1 -
S -6.0 8
£ |
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LC) St
s 1 5 =s.4} .
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@) =T 52 4 7
ST 1 <7 # t ; 1
0 1 1 1 L 1 1 1 1 L -7.6 Il 1 L 1’1 1 L 1 L 1
0 20 40 60 80 100 6.0 6.4 6.8 Ful2 7.6 8.0
Load cycle (¥ x 1000) log,o AK (Paym)

Test data: T. Zhao, J. Zhang, and Y. Jiang. A study of fatigue crack growth of 7075-T651
aluminum alloy. International Journal of Fatigue, 30 (2008) 1169-1180.



Spiral crack in a rod under torsion

\ Initial

cavity

Front view Rear view
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Mesoscale: S
Fatigue cracks at grain boundaries

* Recall the peridynamic fatigue
model: For a given bond,

— ) N — E

A =5 for bonds within a grain
A =50 for bonds between grains

17,000 cycles 30,000 cycles

Fatigue crack growth between grains
represented as Voronoi cells

30



Corrosion fatigue: =,
Diffusion coupled with damage

Laboratories

e Letz fconcentration of a contaminant. 10,800 cycles
« Bond life loss rate depends on g 1
concentration: =
dA
A(0) =1, — = —A(z)e™

dN
« Peridynamic diffusion model:

z(x,t) = j C(q, x)(z(q, t) —z(x, t))qu

where C(q, x)is much larger for damaged
bonds than undamaged.

Example: nucleation occurs at
N =2100 with corrosion
N =12,000 without corrosion




Corrosion fatigue:
Diffusion coupled with damage
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Discussion ) .

 Method retains the main advantages of peridynamics.
e Autonomous crack growth
* Includes both nucleation and growth phases
* Permits interaction between multiple cracks
e Arbitrary crack path in 3D.
* Asimple enhancement allows a spectrum of loading frequencies
* This is a peridynamic version of Miner’s rule.




Extra slides rh) g




Peridynamics basics: ) .
States

e A peridynamic state is a mapping on bonds in a family.

e \We write:

u=A(¢)

where £ is a bond, A is a state, and u is some vector.

e States play a role in peridynamics similar to that of second order tensors in
the local theory.




Peridynamics basics: )
Kinematics

e The deformation state is the function that maps each bond &
into its deformed image:

Y(&) =vyla)

where y is the deformation and
/ N
Deformatlon y
Bond £ q
Deformed images of bonds:

State description allows complexity

Undeformed family of x Deformed family of x




Peridynamics basics: )
Bonds and bond force density

e The vector from x to any point q in its family in the reference configuration is called a bond.
§=q-x
e Each bond has a pairwise force density vector that is applied at both points:

f(q,x,1t).

e Equation of motion is an integro-differential equation, not a PDE:

p(x)y(x,t) = /Hf(q,x,t) dVy + b(x,t).




Peridynamics basics: ) e
Elastic materials

e A peridynamic elastic material has strain energy density given by

W(Y).

e The force state is given by

A

T(Y) =Wy(Y)

where Wy is the Frechet derivative of the strain energy density.




Sandia

Some results about peridynamics W

* For any choice of horizon, we can fit material model parameters to

match the bulk properties and energy release rate.
e Using nonlocality, can obtain material model parameters from wave
dispersion curves (Weckner).

* Coupled coarse scale and fine scale evolution equations can be derived
for composites (Lipton and Alali).

* A set of discrete particles interacting through any multibody potential
can be represented exactly as a peridynamic body.

* Well posedness has been established under certain conditions
(Mangesha, Du, Gunzburger, Lehoucq).




